Extensions 1→N→G→Q→1 with N=C22 and Q=C2×F7

Direct product G=N×Q with N=C22 and Q=C2×F7
dρLabelID
C23×F756C2^3xF7336,216

Semidirect products G=N:Q with N=C22 and Q=C2×F7
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×F7) = C2×D7⋊A4φ: C2×F7/D14C3 ⊆ Aut C22426+C2^2:(C2xF7)336,218
C222(C2×F7) = D4×F7φ: C2×F7/F7C2 ⊆ Aut C222812+C2^2:2(C2xF7)336,125
C223(C2×F7) = C2×Dic7⋊C6φ: C2×F7/C2×C7⋊C3C2 ⊆ Aut C2256C2^2:3(C2xF7)336,130

Non-split extensions G=N.Q with N=C22 and Q=C2×F7
extensionφ:Q→Aut NdρLabelID
C22.1(C2×F7) = D42F7φ: C2×F7/F7C2 ⊆ Aut C225612-C2^2.1(C2xF7)336,126
C22.2(C2×F7) = D286C6φ: C2×F7/C2×C7⋊C3C2 ⊆ Aut C22566C2^2.2(C2xF7)336,124
C22.3(C2×F7) = C4×C7⋊C12central extension (φ=1)112C2^2.3(C2xF7)336,14
C22.4(C2×F7) = Dic7⋊C12central extension (φ=1)112C2^2.4(C2xF7)336,15
C22.5(C2×F7) = C28⋊C12central extension (φ=1)112C2^2.5(C2xF7)336,16
C22.6(C2×F7) = D14⋊C12central extension (φ=1)56C2^2.6(C2xF7)336,17
C22.7(C2×F7) = C23.2F7central extension (φ=1)56C2^2.7(C2xF7)336,22
C22.8(C2×F7) = C2×C4.F7central extension (φ=1)112C2^2.8(C2xF7)336,121
C22.9(C2×F7) = C2×C4×F7central extension (φ=1)56C2^2.9(C2xF7)336,122
C22.10(C2×F7) = C2×C4⋊F7central extension (φ=1)56C2^2.10(C2xF7)336,123
C22.11(C2×F7) = C22×C7⋊C12central extension (φ=1)112C2^2.11(C2xF7)336,129

׿
×
𝔽